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I. Introduction

In his paper [7] Massey noted that there was neither mathematical nor

experimental justification for the hypothesis of statistical equilibrium

assumed by Abramson and others in their calculation of the maximum throughput

of the slotted ALOHA multiaccess algorithm. Now the opposite of statistical

equilibrium is instability which in the present context means the number

of blocked terminals becomes infinite with probability one as time tends to

infinity. Using simulations Kleinrock and Lam [5] noted that the uncontrolled

slotted ALOHA scheme is unstable. A mathematical proof of this fact was

offered by Fayolle et al. [2] using a Markov chain model to describe the

number of blocked terminals. Translated into the language of Markov chains

instability as defined above is equivalent to showing that the Markov chain

is transient, see e.g. Karlin and Taylor [4] for the necessary definitions and

background. In particular we remind the reader of the well known fact that an

irreducible aperiodic Markov chain falls into one of three mutually exclusive

(and exhaustive) classes: positive recurrent, null recurrent and transient,

see e.g. Karlin and Taylor op. cit.

Now Fayolle et al [2] showed that the Markov chain occurring in their

model of the slotted ALOHA scheme is not positive recurrent from which they

erroneously include that the Markov chain is transient. Unfortunately they

did not exclude the possibility that it might be null recurrent. Nevertheless

their assertion that the Markov chain is transient is correct and we present

in this paper a novel proof of this fact based upon a martingale method of

independent interest. The elementary facts ct icerning martingales and

Markov chains that we shall need are summarized in part II and the application

to the Markov chain model of Fayolle e 4MF4 144!1
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II. Transient Markov Chains - A Martingale Approach

In this section we present a well known method (at least to Probabilists)

for constructing a supernartingale associated to a Markov chain which leads to

a simple sufficient condition for a Markov chain to be transient.

Let {Xk, k = 0,1,2,...} denote a Markov chain with state space the non

negative integers I+ = {0,1,2,...} and transition matrix P = P(Xk+l = JIXk=i) "

In addition we assume that the Markov chain is irreducible and aperiodic. Now

if {XkI is recurrent (whether it is positive or null recurrent is immaterial)

then the even {Xk = j} occurs infinitely often (abbreviated i.o.) with pro-

bability one for any state j. Suppose we can construct a non negative,

non constant function f:I + = [ 0,-) satisfying the following sequence of

inequalities:

() 1P f(j) < f(i) for every i c I+.

Now E(f(Xk+l)IXk = i) = YS Pijf(i) < f(i) = f(Xk) and by the Markov property
j=o

(2) E(f(Xk+l)IXo,., Xk) = E(f(Xk+l)IXk) < f(Xk). Consequently the sequence

of random variable f(Xk) is a non negative supermartingale with respect

to {Xk}, see e.g. Karlin and Taylor [4], Definition 1.2, p. 239 or the

more general definition to be found in Doob [1]. We shall call f a

supermartingale generating function.

(3) .Theorem (Doob): A non negative supermartingale converges with probability

one.

This is a basic result in martingale theory and we refer the reader to

Doob [1] for the proof.

(4) Theorem. Suppose the irreducible aperiodic Markov chain {Xk } admits a

non constant, non negative supermartingale generating

function f. Then the Markov chain is transient i.e., P(lim X = -) = 1.
kw
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Proof: Assume to the contrary that {Xk} is recurrent and let jo#jl be any two

states for which f(j OW)f (since f is nion constant such a pair exists,

by hypothesis). Now recurrence implies that Xkzjo and Xk = l .o.

with probability one and hence f(Xk) = f(jo) and f(Xk= j i.o. with

probability one. But this implies that lim f(Xk) does not exist

because f(j0) f ) and this contradicts Doob's martingale convergence

theorem (3).

III. Instability of the slotted ALOHA scheme via a martingale generating function.

We now apply the results of part 2 to the study of the slotted

ALOHA scheme as presented in Fayolle et al [2]. First, some notation:

let Xk A the number of packets awaiting to be transmitted at time k

and Ak A the number of new packets that arrive during the kth time

interval. We make the following standard assumptions:

(5) Ao,Al..,Ak, are i.i.d. random variables with probability distribution

P(Ak = =j) : x, i 0,1,2... and moment generating function
k = j)

j =0
(6) The Ak's are independent of the Xk s and when a new packet arrives

during the kth interval it is transmitted in the next time interval;

thus, two or more arrivals at time k lead to a collision at time k + 1.

(7) If a terminal is blocked at time k it retransmits with probability

p, o<p<l, at time k + 1 and each terminal acts independently of the

others.

Under these assumptions it is easy to see that the process

{Xk is a Markov chain with transition Matrix Pij given by

P oj Xi Ij j>_o

P.. = 0, j<i-2

P1 Xj i (3 'p i + i i (l'0 -0P i " iP(IP)
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+ xji+i ip(l-p) , j>i

i( 1 i P(1-p)i-1) + Xj-i+l i p(1-p) j>.-1

To insure the Markov chain is aperiodic and irreducible it suffices to assume

(9) O<X 0<10

Construction of the supermartingale generating function f:

We try a solution of the form

(10) f(j) : for some r, o< <l. There are two cases to consider:

Case 1: a = supiip(1-p)i-l < y'(1)

Case 2: Since ln ip(l-p)i-=0 there exists i* such that ip(l-p)i1l

< ''(l) for i>i*.

(11) Theorem: (a) if p'(1) > a then there exists a , o< <l such that

f(j)=0J is a supermartingale generating function; (b) If _(1)<a

then there exists an integer i such that f(j)=l, o<j<i and f(j)
j-i*

j >i* is a supermartingale generating function.

P.: Case 1: Note that P .f(i) = I X.& = 4(E )<l=f(O) so inequality
j 0 o j o

is certainly satisfied when i=o. Turning now to the case i>o we

have Z P i = I P ij  X ip(1-p) -l I
j~o ji-lko

CO i-i k+i
+ I Xk41 ip(l-p)i k  =

(Xoig'p) i-I + I Xk(l'ip(l-p)i-l) R k+1 + I Xk+1 ip(1-p) i-Ek+l
k=o k=o

00 OD

Note thatkI Xik(l-ip(l-p)i l)Ek+l:=(lip(lp)i 'l) I Xk k

k=o kzo

=(1-ip(1-p) i- )*() and that . Xk+1 Ip(l-p) i &k+1=

1- " k =ii k1ip(-P) i  J X = ip(l-p) -'().10()-Ao). Upon suitablyrearranging
k=l

terms we obtain the formula
(12) .[ Pi 1-P( -p +i'(

3=o

- - - -.-- . . .. --. L
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consequently f(j)=:J will be a superldrtingale generating function

provided

(13) RWl() -i1iip(1-p)i-1 )+ip(l-p)i-1}<i, equivalently

(14) ( ) /{ (1-ip(1-p) i- ) + ip(1-p)-}, i1=1,2... Denote the function

occurring on the right hand side of (14) by 0i(F) and set ip(1-p) 
i 1

= ai noting that lim ip(1-p) i-=0. Observe that $i is concave
Si~ 100

on [0,1], 0i1(1)=3i<suPa i = a <ip '(1) and that a>a i implies 0i()

<_/{(1-a)+a} on [0,1]. Consequently h( ) =

is convex on [0,1] with h!O) = X0>O, h(1) = 0 and h'k1) = 0 and

h'(1) = '(1) - a > o. Therefore there exists a E*,O<*<l such

that h(O)<o on the open interval ( ,) and this implies that

I(W - 0i()< h()<0 for all & in (E*,1) and ell i, so ( )<Oi(

for at least one~ in (E*,i). This completes the construction of

the supermartingale generating function f in case 1.

Case 2: Since lim 0.'(1) = lim a. = 0 it follows there exists

an iw such that ai< p(1)all i>i*. If we now set f(j)=1 for

o<j<i* and f(j) = * for j> j* and

o<<I then the inequalities Z P, .3< 1=f(i), o<i<i* are auto-

matically satisfied whilst for i>i* the same calculation as in

case 1 leads to the condition

(14') (&)<F,/(1-ip(l-p)i'P)+ip(l-p)i'l], i>i* for someE in (0,1).

By choosing i* so that sup 0'(1) = sup a: < p '(1) the same rea- For

i>i* F
soning using in case 1 may be applied-here to conclude that F

condition (14') is satisfied. The proof is finished.
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I V. Concludinq keinarks

It is interesting to note that martingale methods may also be used

to prove stability. In the context of Markov Chains this was already

done by Lamperti [6] and for applications to the control of queueing

processes see the forth coiming paper by Hajek [3].
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